The folowing table expresses '120' in various number bases. 'DR_{x}' shows the result of 'digit reducing' resulting in an X-digit long number.

Base | DR_{7} | DR_{6} | DR_{5} | DR_{4} | DR_{3} | DR_{2} | DR_{1} |
---|---|---|---|---|---|---|---|

2 | 1111000 | 100 | 1 | ||||

3 | 11110 | 11 | 2 | ||||

4 | 1320 | 12 | 3 | ||||

5 | 440 | 13 | 4 | ||||

6 | 320 | 5 | |||||

7 | 231 | 6 | |||||

8 | 170 | 10 | 1 | ||||

9 | 143 | 8 | |||||

10 | 120 | 3 | |||||

11 | AA,19 | A | |||||

12 | A0 | A | |||||

13 | 93 | C | |||||

14 | 88,12 | 3 | |||||

15 | 80 | 8 | |||||

16 | 78 | F |

Factors: 2^{3} * 3 * 5

120 is the product of the counting numbers from 1 to 5 (See The Sum/Product of the First N Counting Numbers).

120 is the sum of the counting numbers from 1 to 15 (See 'The Sum/Product of the First N Counting Numbers').

120 is in the Pythagorean Triples: (120, 391, 409), (120, 209, 241), (119, 120, 169).

120 is the interior angle of a 'Hexagon' (see 'regular polygons').

Copyright © 2000–2023 William Zeitler

WilliamZeitler.com

WilliamZeitler.com