The folowing table expresses '120' in various number bases. 'DRx' shows the result of 'digit reducing' resulting in an X-digit long number.
| Base | DR7 | DR6 | DR5 | DR4 | DR3 | DR2 | DR1 |
|---|---|---|---|---|---|---|---|
| 2 | 1111000 | 100 | 1 | ||||
| 3 | 11110 | 11 | 2 | ||||
| 4 | 1320 | 12 | 3 | ||||
| 5 | 440 | 13 | 4 | ||||
| 6 | 320 | 5 | |||||
| 7 | 231 | 6 | |||||
| 8 | 170 | 10 | 1 | ||||
| 9 | 143 | 8 | |||||
| 10 | 120 | 3 | |||||
| 11 | AA,19 | A | |||||
| 12 | A0 | A | |||||
| 13 | 93 | C | |||||
| 14 | 88,12 | 3 | |||||
| 15 | 80 | 8 | |||||
| 16 | 78 | F |
Factors: 23 * 3 * 5
120 is in the Pythagorean Triples: (120, 391, 409), (120, 209, 241), (119, 120, 169).
120 is the product of the counting numbers from 1 to 5 (See The Sum/Product of the First N Counting Numbers).
120 is the sum of the counting numbers from 1 to 15 (See 'The Sum/Product of the First N Counting Numbers').
120 is the interior angle of a 'Hexagon' (see 'regular polygons').