The folowing table expresses '300' in various number bases. 'DR_{x}' shows the result of 'digit reducing' resulting in an X-digit long number.

Base | DR_{9} | DR_{8} | DR_{7} | DR_{6} | DR_{5} | DR_{4} | DR_{3} | DR_{2} | DR_{1} |
---|---|---|---|---|---|---|---|---|---|

2 | 100101100 | 100 | 1 | ||||||

3 | 102010 | 11 | 2 | ||||||

4 | 10230 | 12 | 3 | ||||||

5 | 2200 | 4 | |||||||

6 | 1220 | 5 | |||||||

7 | 606 | 15 | 6 | ||||||

8 | 454 | 15 | 6 | ||||||

9 | 363 | 13 | 4 | ||||||

10 | 300 | 3 | |||||||

11 | 253 | A | |||||||

12 | 210 | 3 | |||||||

13 | 1A1 | C | |||||||

14 | 176 | 10 | 1 | ||||||

15 | 150 | 6 | |||||||

16 | 12C | F |

Factors: 2^{2} * 3 * 5^{2}

300 is the sum of the counting numbers from 1 to 24 (See 'The Sum/Product of the First N Counting Numbers').

300 is in the Pythagorean Triple: (300, 589, 661).

Copyright © 2000–2024 William Zeitler

WilliamZeitler.com

WilliamZeitler.com