The folowing table expresses '66' in various number bases. 'DR_{x}' shows the result of 'digit reducing' resulting in an X-digit long number.

Base | DR_{7} | DR_{6} | DR_{5} | DR_{4} | DR_{3} | DR_{2} | DR_{1} |
---|---|---|---|---|---|---|---|

2 | 1000010 | 10 | 1 | ||||

3 | 2110 | 11 | 2 | ||||

4 | 1002 | 3 | |||||

5 | 231 | 11 | 2 | ||||

6 | 150 | 10 | 1 | ||||

7 | 123 | 6 | |||||

8 | 102 | 3 | |||||

9 | 73,11 | 2 | |||||

10 | 66,12 | 3 | |||||

11 | 60 | 6 | |||||

12 | 56 | B | |||||

13 | 51 | 6 | |||||

14 | 4A,10 | 1 | |||||

15 | 46 | A | |||||

16 | 42 | 6 |

Factors: 2 * 3 * 11

66 is the sum of the counting numbers from 1 to 11 (See 'The Sum/Product of the First N Counting Numbers').

66 is the atomic weight of Dysprosium (Dy).

Copyright © 2000–2023 William Zeitler

WilliamZeitler.com

WilliamZeitler.com