The folowing table expresses '666' in various number bases. 'DR_{x}' shows the result of 'digit reducing' resulting in an X-digit long number.

Base | DR_{10} | DR_{9} | DR_{8} | DR_{7} | DR_{6} | DR_{5} | DR_{4} | DR_{3} | DR_{2} | DR_{1} |
---|---|---|---|---|---|---|---|---|---|---|

2 | 1010011010 | 101 | 10 | 1 | ||||||

3 | 220200 | 20 | 2 | |||||||

4 | 22122 | 21 | 3 | |||||||

5 | 10131 | 11 | 2 | |||||||

6 | 3030 | 10 | 1 | |||||||

7 | 1641 | 15 | 6 | |||||||

8 | 1232 | 10 | 1 | |||||||

9 | 820 | 11 | 2 | |||||||

10 | 666 | 18 | 9 | |||||||

11 | 556 | 15 | 6 | |||||||

12 | 476 | 15 | 6 | |||||||

13 | 3C3 | 15 | 6 | |||||||

14 | 358 | 12 | 3 | |||||||

15 | 2E6 | 17 | 8 | |||||||

16 | 29A | 15 | 6 |

Factors: 2 * 3^{2} * 37

666 is the sum of the counting numbers from 1 to 36 (See 'The Sum/Product of the First N Counting Numbers').

Copyright © 2000–2023 William Zeitler

WilliamZeitler.com

WilliamZeitler.com