The folowing table expresses '741' in various number bases. 'DR_{x}' shows the result of 'digit reducing' resulting in an X-digit long number.

Base | DR_{10} | DR_{9} | DR_{8} | DR_{7} | DR_{6} | DR_{5} | DR_{4} | DR_{3} | DR_{2} | DR_{1} |
---|---|---|---|---|---|---|---|---|---|---|

2 | 1011100101 | 110 | 10 | 1 | ||||||

3 | 1000110 | 10 | 1 | |||||||

4 | 23211 | 21 | 3 | |||||||

5 | 10431 | 14,10 | 1 | |||||||

6 | 3233 | 15,10 | 1 | |||||||

7 | 2106 | 12 | 3 | |||||||

8 | 1345 | 15 | 6 | |||||||

9 | 1013 | 5 | ||||||||

10 | 741 | 12 | 3 | |||||||

11 | 614 | 10 | 1 | |||||||

12 | 519 | 13 | 4 | |||||||

13 | 450 | 9 | ||||||||

14 | 3AD | 1C | D | |||||||

15 | 346 | D | ||||||||

16 | 2E5 | 15 | 6 |

Factors: 3 * 13 * 19

741 is the sum of the counting numbers from 1 to 38 (See 'The Sum/Product of the First N Counting Numbers').

741 is in the Pythagorean Triples: (580, 741, 941), (741, 1540, 1709).

Copyright © 2000–2023 William Zeitler

WilliamZeitler.com

WilliamZeitler.com